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• Overview of the SNAP supernova task
• Cosmology fitting: the easy final step
• Image & Spectroscopy reduction
• Modeling SN behavior & systematics:  the hard part
• Predictions for SNAP & Ground-Based SN surveys
• SNAPSim:  A tool for analysis of astronomical surveys
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Different cosmologies cannot be distinguished solely with low-z data 
in the presence of 0.02 mag of photometric zeropoint variation:

(E. V. Linder & D. Huterer)
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How the uncertainty improves as we extend the redshift range.
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Survey to z=1.7
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Prior σ(Ωm)=0.03, no systematics

Prior σ(Ωm)=0.03, 0.02 mag calibration uncertainty

Prior σ(Ωm)=0.00, 0.02 mag calibration uncertainty

Effect of Limiting Redshift for Fixed Number of SNe

(E. Linder)



Photometric Accuracy from Instrument and Mission 
Specifications: 
• Point-source photometry is a common astronomical problem. 
• Estimate of S/N for given scenario must account for: 

o Diffraction and aberrations 
o Charge Diffusion 
o Pixel response function 
o Undersampling 
o Dithering 
o Host galaxy subtraction 
o Atmospheric Seeing & Extinction (ground only) 
o Poisson noise from source 
o Zodiacal Background 
o Dark Current 
o Read Noise 
o Flatfield Errors 
o Readout and pointing overheads. 
o Cosmic Rays 

Those in red are not included in most exposure-time 
calculators.  We have developed a methodology to 
incorporate ALL of these effects into an estimate of optimal 
point source extraction accuracy. 
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Spectroscopic Accuracy from Instrument and Mission 
Specifications: 
• Photometric S/N programs also give S/N per spectral sample 

because image slicer produces a series of narrow-band 
images.  Hence S/N estimates given resolution and sampling 
are well understood. 

• Purpose of spectroscopy is to measure features too narrow for 
filter bands.   These features are indicative of intrinsic 
properties of the supernova. 

• Given S/N per resolution element and derivatives of spectrum 
w.r.t. SN physical properties, Fisher matrices give 
uncertainties on these parameters.  Most difficult to measure: 
metallicity (log Z). 



 Derivatives of SN Spectra, from Peter Nugent Models
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Spectroscopic Accuracy from Specifications:  
Flowdown Results 
• Shot noise, zodi background, dark current, and read noise are 

all important for z=1.7 SNe on HgCdTe detectors. 
• Substantial gains from low-resolution spectrograph (R~100) 

with 1 pixel per spectrograph FWHM.  No gain from higher 
resolution, and “critical sampling” (2 pix per FWHM) is 
substantial degradation of performance. 

• Two-channel (CCD + HgCdTe) spectrograph reduces time 
required to measure metallicity by ~40% or more. 

• Time to measure SNe parameters scales as (1+z)6. 
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Hubble Diagram from Observed Data: 
• Conversion of observed fluxes into distances requires a model 

of the SN events, propagation to us, and instrument 
calibration errors. 

• Simple case: 
m = M + µ 
 
m  is observable 
M  is SN model (std candle) 
µ is propagation model 

Fit observations to the model to get best distance. 
• More realistic model must include: 

o SN flux/spectrum that depends upon several physical 
parameters, manifested by stretch, metallicity, etc. – 
but not explicitly on redshift! 

o K corrections to magnitudes 
o Host dust corrections with unknown AV, RV 
o Possible intergalactic (“gray”) dust 
o Photometric calibration uncertainties 
o Gravitational lensing magnification 
o Malmquist bias 



•  Previously, each of these effects has been 
analyzed individually, no “killers” in the lot.  But do data have 
enough information to constrain all simultaneously? 

• The SNAP SNe analysis will be fitting a model with ~20,000 
free parameters to ~200,000 or more flux observations.  
Tractable? 

• YES – most parameters are “local” to a single event so we 
have techniques to hugely compress the fitting matrices.  Left 
with best-fit values for each event’s µ plus 10-20 shared 
“global” parameters (calibration, gray dust). 

• Marginalization over global parameters gives Hubble diagram 
and covariance matrix. 

• SN model is refined using SNAP data itself in a way that does 
not bias Hubble diagram: 

o Comparing similar SNe at different z to get cosmology 
o Comparing dissimilar SNe at same z to refine SN model. 
o Max-likelihood technique does both simultaneously. 
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Sort into Like Subsets

Group A:
* Si II in spectrum: type Ia
* elliptical host
* bright UV: low metallicity
* fast rise time: low Ni56 mass
* spectral feature velocities
   9000  < v < 10000 km/s

Group B:
* Si II in spectrum: type Ia
* in core of late-type spiral host
* faint UV: high metallicity
* fast rise time: low Ni56 mass
* spectral feature velocities
   9000  < v < 10000 km/s

Group C:
* Si II in spectrum: type Ia
* in outskirts of late-type spiral host
* bright UV: low metallicity
* long rise time: high Ni56 mass
* spectral feature velocities
   8000  < v < 9500 km/s

     Group C:
* Si II in spectrum: type Ia
* in coreof late-type spiral host
* bright UV: low metallicity
* short rise time: high Ni56 mass
* spectral feature velocities
   8000  < v < 9500 km/s
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Each subset gets its own extinction-corrected Hubble diagram:

Group A:
* Si II in spectrum: type Ia
* elliptical host
* bright UV: low metallicity
* fast rise time: low Ni56 mass
* spectral feature velocities
   9000  < v < 10000 km/s

Group B:
* Si II in spectrum: type Ia
* in core of late-type spiral host
* faint UV: high metallicity
* fast rise time: low Ni56 mass
* spectral feature velocities
   9000  < v < 10000 km/s

Group C:
* Si II in spectrum: type Ia
* in outskirts of late-type spiral host
* bright UV: low metallicity
* long rise time: high Ni56 mass
* spectral feature velocities
   8000  < v < 9500 km/s

     Group C:
* Si II in spectrum: type Ia
* in coreof late-type spiral host
* bright UV: low metallicity
* short rise time: high Ni56 mass
* spectral feature velocities
   8000  < v < 9500 km/s
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Each subset gets its own extinction-corrected Hubble diagram:

Combine into one
Hubble diagram

   with magnitude
    difference from 
    z = 0.5
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Results of the End-to-End Simulation: 
• Nominal SNAP mission analysis in progress – first Hubble 

diagrams and cosmology constraints now complete. 
• Optimization of the SNAP mission plan, especially  

o spectroscopy target redshift distribution,  
o spectroscopic exposure times, 
o sub-sampling of high-z events by host type? 
o is nominal mission duration sufficient for science goal? 
o refinement of calibration requirements. 

 
 

 

 



Results of the End-to-End Simulation: 
Ground-Based and Other Alternatives 
• All SNAP simulation tools are equipped to examine ground-

based and space-based alternative sources of data. 
• A best-case alternative for 2010: 

o Event detection with LSST (6.5 m, 7 deg2) to 0.9 
micron wavelength, natural seeing (POI-type 
alternative?) 

o Followup NIR photometry with OH-suppressed 10-meter 
telescope, tip-tilt correction. 

o Followup NIR spectroscopy with OH-suppressed laser-
guided AO 10-meter telescope. 

o Full time on each telescope, Las Campanas weather and 
seeing histories. 

o Possible NGST access for NIR followup? 
o see analysis by A. Kim; still difficult to obtain sufficient 

photometry beyond z~0.9. 
o Ground is attractive for supplementing SNAP at z<0.8. 

• End-to-end analyses of alternative scenarios continues.  What 
z range is it productive to supplement with ground 
observations? 
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for SN metallicity and 2-parameter Clayton/Cardelli/Mathis host dust 
model (see earlier talk by A. Kim for details).
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 SNAPSim:  A Generic Survey-Analysis Tool
• Currently integrating all of the previous analysis steps into a

unified software structure, including:
o Orbiting/ground observatory condition simulation,

including atmospheric effects
o Exposure-time & S/N analysis for imaging &

spectroscopy
o Calibration errors
o Supernova spectrum and light-curve fitting
o Joint solution for cosmological and systematic variables.

• Under current development:
o Pixel-level simulations, including shapelet-based Monte-

Carlo realization of galaxies (Massey et al).
o Image-slicer spectrograph optical simulation &

extraction methods (CNRS group)
o More sophisticated models for SN behavior as functions

of pre-explosion state.
o Weak gravitational lensing sensitivity for various

cosmological tests (“cosmic shear,” cluster counts, non-
Gaussian signatures)

• SNAPSim will be useful for analysis of a very wide variety of
ground & space-based astronomical surveys.




